Mom, Vaper, Diabetic, Crazy Cat Lady

Me

Stars and Dust Across Corona Australis

Cosmic dust clouds cross a rich field of stars in this telescopic vista near the northern boundary of Corona Australis, the Southern Crown. Less than 500 light-years away the dust clouds effectively block light from more distant background stars in the Milky Way. Top to bottom the frame spans about 2 degrees or over 15 light-years at the clouds’ estimated distance. At top right is a group of lovely reflection nebulae cataloged as NGC 6726, 6727, 6729, and IC 4812. A characteristic blue color is produced as light from hot stars is reflected by the cosmic dust. The dust also obscures from view stars in the region still in the process of formation. Just above the bluish reflection nebulae a smaller NGC 6729 surrounds young variable star R Coronae Australis. To its right are telltale reddish arcs and loops identified as Herbig Haro objects associated with energetic newborn stars. Magnificent globular star cluster NGC 6723 is at bottom left in the frame. Though NGC 6723 appears to be part of the group, its ancient stars actually lie nearly 30,000 light-years away, far beyond the young stars of the Corona Australis dust clouds. via NASA https://apod.nasa.gov/apod/ap210806.html

Curiosity Celebrates Another Year on Mars

In this self-portrait from 2018, NASA’s Curiosity Mars rover sits atop Vera Rubin Ridge, which the rover had been investigating. via NASA http://www.nasa.gov/image-feature/curiosity-celebrates-another-year-on-mars

Tycho and Clavius

South is up in this detailed telescopic view across the Moon’s rugged southern highlands. Captured on July 20, the lunar landscape features the Moon’s young and old, the large craters Tycho and Clavius. About 100 million years young, Tycho is the sharp-walled 85 kilometer diameter crater near center, its 2 kilometer tall central peak in bright sunlight and dark shadow. Debris ejected during the impact that created Tycho still make it the stand out lunar crater when the Moon is near full, producing a highly visible radiating system of light streaks, bright rays that extend across much of the lunar near side. In fact, some of the material collected at the Apollo 17 landing site, about 2,000 kilometers away, likely originated from the Tycho impact. One of the oldest and largest craters on the Moon’s near side, 225 kilometer diameter Clavius is due south (above) of Tycho. Clavius crater’s own ray system resulting from its original impact event would have faded long ago. The old crater’s worn walls and smooth floor are now overlayed by smaller craters from impacts that occurred after Clavius was formed. Observations by the Stratospheric Observatory for Infrared Astronomy (SOFIA) published in 2020 found water at Clavius. Of course both young Tycho and old Clavius craters are lunar locations in the science fiction epic 2001: A Space Odyssey. via NASA https://apod.nasa.gov/apod/ap210805.html

The Menu Matters

An army marches on its stomach, the saying goes, and astronauts fly on theirs. via NASA http://www.nasa.gov/image-feature/the-menu-matters

EHT Resolves Central Jet from Black Hole in Cen A

How do supermassive black holes create powerful jets? To help find out, the Event Horizon Telescope (EHT) imaged the center of the nearby active galaxy Centaurus A. The cascade of featured inset images shows Cen A from it largest, taking up more sky than many moons, to its now finest, taking up only as much sky as an golf ball on the moon. The new image shows what may look like two jets — but is actually two sides of a single jet. This newly discovered jet-edge brightening does not solve the jet-creation mystery, but does imply that the particle outflow is confined by a strong pressure — possibly involving a magnetic field. The EHT is a coordination of radio telescopes from around the Earth — from the Caltech Submillimeter Observatory in Hawaii USA, to ALMA in Chile, to NOEMA in France, and more. The EHT will continue to observe massive, nearby black holes and their energetic surroundings. via NASA https://apod.nasa.gov/apod/ap210804.html